ME Electronics - Syllabus

Course Name	:	ELECTRONIC SYSTEM DESIGN
Course Code	:	ECN 511
Credits	:	3
LTP	:	3-0-0

Course Objectives:

This subject covers the basics of digital logic circuits and design. Through the basic understanding of Boolean algebra and number systems it introduces the student to the fundamentals of combinational logic design and then to sequential circuits (both synchronous and asynchronous). Memory systems are also covered. There is an introduction to VHDL. Students will be provided with to implement the PLD based designs (using both schematic capture and VHDL) in actual chips.

Lecture wise breakup

No. of Lectures

Total No. of Lectures - 42

1	DESIGN CONCEPTS	(02)		
1	Digital Hardware, Design Process, Design of Digital Hardware.			
2	LOGIC CIRCUITS	(03)		
	Variables & Functions, Logic gates & Networks synthesis, Introduction to VHDL.			
3	OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS			
	Strategy for minimization, Incompletely specified functions, Multiple output	(06)		
	circuits, Multilevel synthesis & Analysis.			
4	ASYNCHRONOUS SEQUENTIAL CIRCUITS	(08)		
	Analysis, Synthesis, State Reduction, State Assignment, Hazards.			
5	DIGITAL SYSTEM DESIGN	(04)		
	Building Block Circuits.			
6	TESTING OF LOGIC CIRCUITS	(04)		
	Fault Model, Path sensitizing, Random testing, Circuits with Tree Structure			

Course Outcomes:

Studen	nts will be able to
1	Design, simulate, build and debug complex combinational and sequential digital circuits
	based on an abstract functional specification.
2	Describe the algorithmic principles of a number of important EDA techniques, such as behavioral and logic synthesis, logic simulation, static timing analysis, and power analysis
3	Apply appropriate EDA tools to electronic system design and verification Problems

Suggested Books:

Sr. No.	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1	A VHDL Primer- Bhaskar	1998
2	An Engineering Approach to Digital Design – FLETCHER	2002
3	Logic and Computer Design Fundamentals – MANO	2007
4	Introduction to Logic Design – MARCOVITZ	Latest Edition

Course Name	:	MICROELECTRONICS
Course Code	:	ECN 512
Credits	:	3
L T P	:	300

Total number of lectures: 42

Course Objectives:

The students after attending this course will be able to understand advanced topics like:

- I.C. fabrication techniques.
- Different steps of fabrication like oxidation, diffusion, ion implantation, Epitaxial growth. Thin film deposition techniques like CVD.
- Design of Silicon Capacitor.

	Lecture wise breakup	No of lectures
1	MICROELECTRONICSTECHNOLOGY Introduction, and its use in I.C. fabrication. Scales of integration from SSI to ULSI.	(3)
2	CRYSTAL GROWTH Single Crystal growth of Silicon and Gallium Arsenide. Substroth slicing and polishing. Zen refining of Semiconductor crystals.	(4)
3	OXIDATION Oxide layer growth on Silicon wafer surface. Oxidation in the presence of dry oxygen & wet oxygen.Oxide layer growth along various crystal directions.	(4)
4	DIFFUSION Solution to Fick's Laws Junction formation. Diodes, transistors and MOSFETs.	(3)

5	EPITAXY VPE, LPE and MBE: Individual epitaxial units, their operation and quality of film growth.	(4)
6	ION IMPLANTATION The process and techniques for formation of ion-implanted doped layers and their characteristics.	(4)
7	THIN FILM DEPOSITION Growth of thin metallic films. Normal and ultra-high vacuum systems. Thickness monitors.	(4)
8	CHEMICAL VAPOUR DEPOSITION Growth of CVD films. Growth mechanism and characterization. MOCVD.	(4)
9	STANDARD BIPOLAR, NMOS AND CMOS CIRCUITS Processing and fabrication using circuit layout. Process evaluation.	(4)
	THE SI-MOS CAPACITOR	(4)
10	Its fabrication and characteristics.	
11	SUBMICRONDEVICEPHYSICSANDTECHNOLOGYReview of basic device physics, MOS capacitor and transistor theory, Moore's law on technology scaling, MOS device scaling theory, Short channel effects, sub threshold leakage, Punch through, DIBL, High field mobility, Velocity saturation and overshoot, ULSI technology, Nano fabrication	(4)

Students will be able to			
1	Understand I.C. fabrication processes, ULSI technology, nano fabtication.		
2	Understand devices and Materials which are in recent trends in technology		

	BOOKS:	Year of Reprint
1	Fundamentals of semiconductor Fabrication- S. M Sze, G May	2000
2	Physics of semiconductor devices- S.M Sze	Latest Edition
3	Microelectronics: Theory Design and Fabrication by Edward Keonjian	Latest Edition
4	Microelectronics –Jacob Millman	Latest Edition

Course Name : ADVANCED DIGITAL SIGNAL PROCESSING		ADVANCED DIGITAL SIGNAL PROCESSING
Course Code	:	ECN 523
Credits	:	3
LTP	:	3-0-0

Total No. of Lectures – 42

Course Objectives:

Course Objectives: The purpose of this course is to provide in-depth treatment on methods and techniques in discrete-time signal transforms, digital filter design, optimal filtering, power spectrum estimation, multi-rate digital signal processing, DSP architectures, which are of importance in the areas of signal processing, control and communications.

Lecture wise breakup	No. of Lectures

1	DIGITAL FILTERS FIR filters, IIR filters. Digital filter design techniques: Impulse invariance. Bilineartransformation, finite difference, window design methods, frequency samplingoptimization algorithms. MATLAB problems	05
2	WAVELET TRANSFORM: Continuous & discrete wavelet transforms, Filter Banks. MATLAB problems, STFT (discreet and continuous time)	04
3	EFFECTS OF FINITE WORD LENGTH IN DSP SYSTEM Rounding and truncation errors, quantization effects in A/D converter, FIR and IIR filters	04
4	MULTI-RATE SIGNAL PROCESSING Integer sampling rate conversion. Interpolation and decimation filters. Design of practical sampling rate converters.Sampling rate conversion by an arbitrary factor. Applications of multi-rate signal processing in telecommunications.	05
5	ADAPTIVE FILTERING: Concepts, Adaptive filters as noise cancellers, adaptive line enhancer, in-system modeling. Basic Wiener filter.	04
6	LINEAR PREDICTION	04
7	APPLICATIONS OF DSP: Radar, sonar, biomedical, communications, speech and image processing.	04
8	ADAPTIVE SIGNAL PROCESSING	04
9	BASIC CONCEPTS OF SPEECH SIGNAL PROCESSING	04
10	POWER SPECTRUM ESTIMATION	04

Stu	Students will be able to		
	Understand concepts of digital filter design techniques.		
1			
2	Understand the advanced digital signal processing techniques such as wavelet transform,		
	multirate signal processing, adaptive filtering.		
3	Do MATLAB problems on like convolution, FIR Filter etc		

Suggested Books:

Sr. No.	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1	Digital Signal Processing-E C fleacher& B W Jervis; PHI.	Latest edition
2	Digital Signal Processing-A.V. Oppenheim & B.W. Jervis; PHI.	2006
3	Digital Signal Processing-J.G. Prokis& D.G. Manolakis; PHI.	2006
4	Digital Signal Processing-M.H. Hayes; Schaum's Outlines.	2002
5	Digital Signal Processing-S Salivahanan, AVallavraj& C Gyanapriya; TMH.	2011
6	Applied Digital signal processing – Manolakis, Ingle.	Latest edition

Course Name	:	FPGA BASED SYSTEM DESIGN
Course Code	••	ECN 524
Credits	••	3
LTP	:	3-0-0

Course Objectives:

The goal is to enable students to design and implement custom computing systems with FPGAs. Students will gain knowledge and understanding of:

- Different technologies to implement digital computing systems.
- Various FPGA architectures.
- Automated design flows supporting designs with FPGAs
- Fundamentals of the FPGA design tools.
- The reconfigurable computing systems and the roles of FPGAs in those systems.

Lecture wise breakup

INTRODUCTION:

1 VLSI Design Flow, Structured Design Strategies, VLSI Design Styles, Chip Design Options.Role of FPGAs, FPGA Type, FPGA vs Custom VLSI, FPGA Based System Design. Type of ASIC, Full custom ASIC, Gate Array Based ASIC, Standard Cell Based ASIC, Different Types of Array, Design Flow, Case Study, Economics of ASIC.

Total No. of Lectures – 42

No. of Lectures

12

2	ASIC LIBRARY DESIGN: Transistor as Resistor, Transistor Parasitic Capacitance, Logical Effort, Predicting Delay, Logical Area, Logical paths, multistage cells, Optimum Delay, Library Cell	06
	Design, Library.	L
3	PROGRAMMABLE ASICS: Anti-fuse, Static RAM, EPROM & EEPROM, Practical Issues, Specification and	06
	Programmable.	
4	FPGA:	06
	FPGA Architectures, SRAM-Based FPGA, Permanently Programmed FPGAs,	l
	Chip I/O, Circuit Design of FPGA fabrics. ASIC I/O Cells.	l
5	HDL:	06
	An overview of VHDL and verilog HDL, Basic concepts of hardware description	l
	languages. Structural, Data-flow and Behavioral styles, Delay modeling. Control	l
	statements, FSM modeling of hardware description. Architecture of event driven	l
	simulators.	1
6	LOGIC SYNTHESIS:	06
	Physical design compilation, simulation, and implementation. Floor planning and	I
	placement,Commercial EDA tools for synthesis.	

S	Students will be able to		
1	Design ASIC library, programmable ASICs and FPGA.		
2	Design and model digital circuits with VHDL at behavioral, structural, and RTL Levels		
	and logic synthesis		

Sr. No.	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1	Wayne Wolf, "FPGA- Based System Design" Pearson education, LPE	2000
	1st Indian Reprint,	
2	J. Bhaskar, "VHDL Primer", Pearson Education Asia	2001.
3	Z. Navabi, "VHDL", McGraw Hill International Ed.	1998
4	S. Palnitkar, "Verilog HDL: A Guide to Digital Design and Synthesis", Prentice Hall NJ, USA), 1996.	Latest Edition
5	John V. oldfield,Richard C. Dorf "Field Programmable Gate Arrays" John Wiley & Sons (1995)	Latest Edition
6	Michad John, Sebastian Smith "Application Specific Integrated Circuit", Pearson Education, LPE 2006.	Latest Edition

Course Name	:	ADVANCED VIRTUAL INSTRUMENTATION
Course Code	:	ECN 525
Credits	:	3
LTP	:	3-0-0

The goal is to provide students with the ability to develop a fully virtual instrument (VI), capable of acquiring, processing, displaying and storing real time bio-signals, by the end of the semester. Covers the basics of virtual instrumentation including use of IEEE GPIB, RS232 interfaces, and data acquisition boards. Interfacing of a computer to various instruments for data acquisition and instrument control using a state of the art software platform such as National instrument's LABVIEW.

Lecture wise breakup

No. of Lectures

Total No. of Lectures – 42

	GRAPHICAL SYSTEM DESIGN:	03
	Graphical system design model (GSD), Design with GSD, Virtual instrument &	
1	Traditional Instrument, Virtual Instrumentation in engineering process, LabVIEW	
	and VI, Comparison between conventional programming and graphical	
	programming.	
2	INTRODUCTION TO LABVIEW:	08
	Components of LabVIEW, front panel, Tools and other Palettes, controls and	
	indicators, data types and conversions, operations on numbers, loops (FOR,	
	WHILE), Feedback, Auto indexing, Local Variable, Global Variables, Shift	
	Registers, sub-VI creation, sequence structure, case structure, Formula	
	Node, Arrays and cluster, Inter-conversion of arrays and clusters, charts and graphs	
	and property nodes, state machines, strings and string manipulation, output to files	
	and input from files.	
3	DATA ACQUISITION:	06
	Basic of data acquisition (Classification of signals, Real World signals, Analog	
	Interfacing, Connecting the signal to board, Practical Vs. Ideal interfacing), Signal	
	conditioning, DAQ Hardware Configuration, Measurement and Automation	
	Explorer, Interfacing with assistants (DAQ assistant, analysis assistants, Instrument	
	assistants).	
4	INSTRUMENT CONTROL:	05
	Introduction, GPIB communication, Hardware specifications, Software	
	Architecture, Instrument I/O assistant, VISA, Instrument Drivers, Serial Port	
	Communication.	
5	IMAQ VISION:	05
	Vision Basics, Image processing and analysis, particle analysis, Machine Vision,	
	Machine Vision Hardware and Software.	
6	MOTION CONTROL:	07
	Components of motion control system. Software for configuration, prototyping and	
	development, motion controller, move types, motion amplifier and drives, feedback	
	devices and motion I/O.	

7	VIRTUAL INSTRUMENTATION APPLICATIONS (BASED ON 08	8
	LABVIEW):	
	Development of a complete application in any of these fields like communication	
	system (analog and digital communication), control system (motion control,	
	temperature, current control etc.), Digital Signal Processing (Fourier transforms,	
	power spectrum, correlation methods, windowing & filtering), Image acquisition	
	and processing etc.	

The stu	The students will be able to		
1	Create virtual instrument (VI), Edit and debug virtual instruments		
2	Build Arrays loops, formulas and sequence structures using LabVIEW software		
3	Customize charts and graphs utilizing LabVIEW software, design a complete data		
	acquisition system		
4	Accommodate PC interfacing principles and instrument driver for computer		
	measurement and control, Employ PC ports for real time programming, using data		
	sockets to control a stepper motor over the network.		

Sr. No.	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint	
	Sanjay Gupta &J.John, "Virtual Instrumentation Using LabVIEW",	2006	
1.	Electrical Engineering Series, The Tata McGraw-Hill, New Delhi,		
	India.	2000	
2	Jeffrey Travis, JimKring, "LabVIEW for everyone", 3 rd edition Pearson Education, Delhi, India.	2008	
3	LabVIEW manual.		
_	Gary Johnson, "LabVIEW Graphical Programming", 2nd Edition,	1997	
4 McGraw Hill, New York.			
5	Robert H.Bishop, "Learning with LabVIEW [™] 7 Express", Pearson	2005	
5	Education, Delhi, India.		
6	Lisa K. wells & Jeffrey Travis, "LabVIEW for everyone", Prentice	1997	
•	Hall, New Jersey.		
7	Jovitha Jerome, "Virtual Instrumentation using LabVIEW", PHI	2012	
	Learning ,New Delhi		
8	www.ni.com		
9	www.ltrpub.com		

Course Name	:	EMBEDDED NETWORKING
Course Code	:	ECN 526
Credits	:	3
LTP	:	3-0-0
		Total No. of Lectures – 42

The students after attending this course will be able to understand the functioning of microcontrollers. The importance of architecture of device and the programming shall help the students use the devices. The role of support chips and their functioning in a programmable system will become clear.

Lecture wise breakup

No. of Lectures

	INTRODUCTION TO CAN:	08
	The CAN bus - General - Concepts of bus access and arbitration - Error processing	00
1	and management - From concept to reality -Patents, licenses and certification -	
-	CAN protocol: 'ISO 11898-1'-Content of the different ISO/OSI layers of the CAN	
	bus- Compatibility of CAN 2.0A and CAN 2.0B.	
2	ETHERNET BASICS:	08
	Elements of a network – Inside Ethernet – Building a Network: Hardware options	
	Cables, Connections and network speed – Design choices: Selecting components –	
	Ethernet Controllers – Using the internet in local and internet communications –	
	Inside the Internet protocol.	
3	EMBEDDED ETHERNET:	08
	Exchanging messages using UDP and TCP – Serving web pages with Dynamic	
	Data - Serving web pages that respond to user Input - Email for Embedded	
	Systems – Using FTP – Keeping Devices and Network secure.	
4	INDUSTRIAL NETWORKING PROTOCOL:	08
	LIN - Local Interconnect Network - Basic concept of the LIN 2.0 protocol - Fail-	
	safe SBC – Gateways - Managing the application layers - Safe-by-Wire - Safe-by-	
	Wire Plus - Audio-video buses - I2C Bus - D2B (Domestic digital) bus - MOST	
	(Media oriented systems transport) bus - IEEE 1394 bus or 'FireWire'- profi-bus.	
5	RF COMMUNICATION:	10
	Radio-frequency communication: internal and external - Remote control of opening	
	parts - PKE (passive keyless entry) and passive go- TPMS (tyre pressure	
	monitoring systems) - Wireless networks- GSM-Bluetooth - IEEE 802.11x - NFC	
	(near-field communication).	

Course Outcomes:

Stude	Students will be able to				
1	Understand the functioning of microcontrollers. The importance of architecture of device				
	and the programming shall help the students use the devices.				
2	The role of support chips and their functioning in a programmable system will become				
	clear.				

Suggested Books:

Sr. No.	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1.	Dominique Paret, "Multiplexed Networks for Embedded Systems- CAN, LIN, Flexray, Safe-by-Wire" John Wiley & Sons Ltd.	2007
2	Jan Axelson 'Embedded Ethernet and Internet Complete', Penram publications.	2003
3	GlafP.Feiffer, Andrew Ayre and Christian Keyold, "Embedded networking with CAN and CAN open". Embedded System Academy.	2005
4	Gregory J. Pottie, William J. Kaiser "Principles of Embedded Networked Systems Design", Cambridge University Press, Second Edition.	2005

Course Name	:	ADVANCED COMMUNICATION SYSTEM
Course Code	:	ECN 531
Credits	:	3
LTP	:	3-0-0

Total No. of Lectures – 42

Course Objectives:

By the end of this course, the students should be able to

- 1. Explain the communication process and the various advanced digital modulation techniques.
- 2. To describe advanced multiplexing techniques in a communication system.
- 3. Explain the concepts of various latest technologies in the area of wireless optical communication and all optical processing.
- 4. Study integrated optical circuits and its building block devices such as waveguide, modulators and couplers etc.

Lecture wise breakup

No. of Lectures

1	INTRODUCTION	05	
	The communication process, sources of information, communication		
	networks, communication channels/ resources, analog vs digital		
	communication, analysis and design of communication systems		
	DIGITAL CARRIER MODULATION SCHEMES	12	
	Baseband binary PAM systems, Duo-binary baseband PAM system, M-ary		
2	signaling schemes, Binary ASK, PSK, FSK signaling schemes, Coherent and		
	non-coherent, M-ary QAM, Continuous phase modulation (QPSK and		
	variants, MSK, GMSK), comparison of digital modulation schemes		
3	ADVANCED MULTIPLEXING TECHNIQUES	12	

	Time division multiplexing, Wavelength division multiplexing, Dense Wavelength division multiplexing (DWDM), Ultra dense Wavelength division multiplexing, coarse DWDM, Orthogonal frequency division multiplexing, Polarization division multiplexing, Duty-cycle division multiplexing, OCDMA, 2D and 3D codes				
	ADVANCED COMMUNICATION TECHNIQUES	07			
4	Wireless optical communication: Radio over fiber, free space optics (FSO),				
	losses in FSO, passive optical networks, All Optical signal processing				
	INTEGRATED OPTICS				
5	Types of waveguide, Polymer and fiber integrated optics, losses in				
3	waveguide, couplers, electro-optic modulators, Integrated optic detectors,				
	resonators, Optical integrated circuits				

Stude	Students will be able to		
1	Explain the advanced modulation techniques in communication systems.		
2	Analyze the advanced multiplexing techniques of communication systems.		
3	Explain the design of advanced wireless communication networks.		
4	Study and investigate Integrated optical circuits and devices		

Sr. No.	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1	Taub and Schilling, "Principles of Communication systems", McGraw Hill	Latest Edition
2	B.P.Lathi, Modern Digital and analog communication systems, 3rd Edition, Oxford University Press	Latest Edition
3	Proakis, "Communication Systems", 2 nd Edition, Prentice Hall.	Latest Edition
4	K. Sam Shanmugam, "Digital and analog communication systems", John Wiley and Sons Inc.	Latest Edition
5	Olivier Bouchet, "Wireless Optical Communications", <u>Wiley</u>	Latest Edition
6	Integrated Optics Theory and Technology, Authors:Robert G. Hunsperger, Springer	Latest Edition

Course Name	:	SATELLITE COMMUNICATION
Course Code	:	ECN 532
Credits	:	3
LTP	:	3-0-0

- Spacecraft structure
- Different communication bands.
- Different types of interferences
- Different modulation and carrier recovery techniques.
- Different multiple access techniques like CDMA, FDMA and TDMA.
- Satellite applications like TV, mobile, internet.

Lecture wise breakup

INTRODUCTION AND BACKGROUND 2 1 Historical Background, basic concepts, communication satellites, communication networks and services, satellite description 2 **ORBITAL ASPECTS AND LAUNCHING** 4 Orbital mechanics, orbital elements, geostationary orbit, other orbits for satellite communications, rocket propulsion, injection into final orbit, launch vehicle. 3 SPACECRAFT SUBSYSTEMS 4 Spacecraft structure, primary power, various subsystems of a satellite **FREQUENCY & PROPAGATION ASPECTS:** 4 4 Frequency spectrum, communication bands, frequency reuse, propagation aspects. LINK INTERFERENCE ANALYSIS 5 4 General considerations, rain induced attenuation, different types of interferences THE RF LINK DESIGN 4 6 The basic RF link, limits on link performance, satellite links-up and down, optimization of the link, temperature considerations, propagation factors, rain attenuation model. 7 **MODULATION AND CARRIER RECOVERY:** 4 Source signals, digital modulation techniques-PSK, QPSK, M-array PSK& FSK.PLL, carrier recovery with narrowband filter and AFC loop 8 MULTIPLE ACCESS 4 System engineering considerations, FDMA, TDMA, CDMA, comparison of multiple access techniques. CODING AND ERROR CORRECTION 9 4 Error correction techniques, coding **CODING AND ERROR CORRECTION** 10 4 Error correction techniques, coding

No. of Lectures

Total No. of Lectures – 42

11	EARTH STATION & VSATS:	4
	Transmitters, receivers, components of an earth station, VSAT-types, uses	
12	APPLICATIONS:	4
	GPS, Mobile, Internet, etc.	

Stud	lents will be able to
1	Identify the fundamentals of orbital mechanics, the characteristics of common orbits used by communications and other satellites
2	Understand the systems required by a satellite communications to function and the trade- offs and limitations encountered in the design of a satellite communications system.
3	Be able to calculate an accurate link budget for a satellite or other wireless communications link.
4	Understand the concept of multiple access techniques like CDMA,FDMA and TDMA

Suggested Books:

Sr. No.	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1	Wilbur L.Pritchard, HenryG.Suyderhoud, Robert A.Nelson; Satellite	2014
	communication system engineering, 2nd edition, Pearson.	
2	Tri T. Ha, Digital Satellite Communication McGraw-Hill	2011
3	M. Richharia, Satellite Communication Systems, McGraw Hill, 1999.	1999
4	G. Maral& M. Bousquet, Satellite Communication Systems, John	1999
-	Wiley and Sons, Inc.,	
5	G. Maral& M. Bousquet, Satellite Communication Systems, John	1999
5	Wiley and Sons, Inc.,	
6	B. Elbert, Introduction to Satellite Communications, Artech House,	1999
7	Pratt, Bostian, and Allnutt, Satellite Communication Systems, 2nd	2003
/	Edition, John Wiley & Sons, .	

Course Name	:	BIOMEDICAL ENGINEERING
Course Code	:	ECN 533
Credits	:	3
LTP	:	3-0-0

Course Objectives:

Total No. of Lectures – 42

With the introduction of this subject, students would be able to understand the basics of biomedical engineering and realize the problem encountered in the medical field, encouraging them to find the solution and application in this area and to make the student understand the working and application of Biomedical devices and instrument.

Lecture wise breakup

No. of Lectures

1	INTRODUCTION TO BIOMEDICAL INSTRUMENTATION Basic Anatomy and Physiology: Circulatory system, Nervous system and Respiratory system, Review of development of biomedical instrumentation and Biometrics, Review of transducers, Sensors and electrodes.	4
2	BIOMEDICAL DEVICES AND MEASUREMENTS Cardiovascular Measurement: The heart out cardio vascular system, Electrocardiography, Photocardiography, Ballistocardiography, Plethymography, MagnetaCardiography, Pacemakers, Defibrillators and computer applications. Respiratory system measurement: Respiratory mechanism, measurement of gas volume, flow rate, measurement of gas concentration in inhaled aided respiratory controller. Measurement of electrical activities in muscles and brain: Electromyography, Electroencephalograph and their interpretation.	6
3	MODERN IMAGING SYSTEM Introduction to Ionising and Nonionising radiation, principles of X-ray production and interaction, special techniques, CAT, mammography, Ultrasound Imaging Systems and its interaction, Magnetic Resonance Imaging System, Basic NMR components different imaging methods, image processing, filters, enhancements and restoration and image segmentation.	6
4	BIOMEDICAL TELEMETRY AND TELEMEDICINE Introduction to Biotelemetry, Physiological parameters, Wireless telemetry, Single channel telemetry systems, Multichannel wireless telemetry system, Multipatient telemetry, Implantable telemetry systems, transmission of analog physiological signals over telephone, Telemedicine, Application of Telemetry in Patient care	7
5	CARDIAC PACEMAKERS AND DEFIBRILLATORS Cardiac pacemakers: External pacemakers, Implantable pacemakers, Progammable Pacemakers, Performance aspects of Implantable pacemakers, Power sources, Pacing system analyzers Cardiac Defibrillators: Dc defibrillator, Defibrillator electrodes, Performance aspects, Implantable Defibrillator analyzer.	9
6	OTHER THERAPEUTIC QUIPMENTS Hemodialysis machine: Functions of Kidenys, Artificial Kidney, Dialysers,	10

Portable kidney Machines Instruments for Surgery: Surgical diathermy	
machine, Safety aspects in Electrosurgical units, Surgical diathermy	
analyzers, Physiotheraphy and Electrotherapy Equipment: Short-wave	
Diathermy machine, Microwave diathermy Machines, Ultrasonic therapy unit,	l
Electro-diagnostic/Therapeutic instruments, Pain relief through electrical	
Stimulation.	
	1

Stu	Students will be able to		
	Design, simulate, build and debug complex combinational and sequential digital circuits		
1	based on an abstract functional specification		
2	The capability to apply advanced mathematics (including differential equations and		
	statistics), science, and engineering to solve the problems at the interface of engineering and		
	biology		
3	An understanding of biology and physiology.		
4	The ability to make measurements on and interpret data from living systems.		

Suggested Books:

Sr. No.	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1	Handbook of Biomedical Instrumentation, Khandpur	2010
2	Medical Instrumentation: Application and Design, J.G.Webster, Houghton Mifin.	1991
3	Biomedical Instrumentation and Measurements, Leslie Cromwell, Fred J. Weibell.	2004
4	Introduction to Biomedical Equipment Technology, Joseph J.Carr, John M.Brown.	2001

Course Name	:	ELECTRONIC WASTE MANAGEMENT
Course Code	:	ECN 534
Credits	:	3
LTP	:	3-0-0
		Total No. of Lectures – 42

Course Objectives:

Course objectives: This subject introduces the concept of E-waste, properties of different materials used in manufacturing of electrical and electronics products and different methods used to dispose all these materials like landfill, burning, concept of recycling and E-waste management methods.

Lec	Lecture wise breakup No. of Lecture		
1	INTRODUCTION: Introduction to E-waste, classification of E-waste, legislative influences on electronic recycling, WEEE and ROHS directive, treatment options for WEEE, material composition of WEEE, health and safety implication	6	
2	MATERIALS USED IN MANUFACTURING ELECTRICAL AND ELECTRONIC PRODUCTS: Overview, ROHS directive and prescribed materials – lead, brominated flame retardants, soldering and move to lead free assembly, printed circuit board materials, encapsulant of electronic components, indium tin oxide and LCD screens, polymeric materials in enclosures, casing and panels, material composition of mobile phones, computers, televisions, washing machines and other electronic components, useful components and hazardous components in electronic waste.	8	
3	DUMPING, BURNING AND LANDFILL: Introduction, landfills, pollutions from landfill, landfill site construction, burning, incineration, thermal processing, current practices in India, case studies and projects.	09	
4	INTEGRATED APPROACH TO ELECTRONIC WASTE RECYCLING: Separation and sorting, treatment, emerging technologies like separation, thermal treatment, sensing technologies, plastics to liquid fuels, sorting, crushing, automated disassembly, design for recycling and inverse manufacturing. Design methodology and resource efficiency, environmentally sound treatment technology for E-waste, eco-design guidelines for manufacturing, case studies and project.	11	
5	ELECTRONIC WASTE MANAGEMENT: Methods for electronic waste management, national and international efforts, corporate social responsibility, extended producer responsibility(EPR), current practices in India, case studies and project.	08	

Stu	Students will be able to			
1	1 Implement different E-waste management methods.			
2	Understand aspects and issues related to recycling of E waste			
3	Understand the dumping, burning, incineration (combustion) and land disposal of E			
	waste.			

Sr. No.	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1	E-waste implications, regulations and management in India and current global best practices by rakeshJohri (2008), TERI publishing.	2008

Course Name	:	MOBILE COMMUNICATIONS AND FADING
Course Code	:	ECN 535
Credits	:	3
LTP	:	3-0-0
		Total No. of Lectures – 42

The student would be able to understand the basics of mobile communication and realize the problems encountered in day today life encouraging him to find solutions hence with.

Lecture wise breakup

No. of Lectures

1	INTRODUCTION Introduction to Wireless Communications Systems and applications, Need of mobility, Development and differences between current standards, WLL, WLAN, Bluetooth and personal area networks (PANs) 802.11b (Wi-Fi Networks)	04
2	WIRELESS TRANSMISSION Frequencies for radio transmission, cellular concept, signal propagation effects, Mobile communication channel models. Interference, improving capacity in cellular systems	06
3	FADING, DIVERSITY AND EQUALISATION Small scale Multipath Propagation, Parameters of mobile multipath channels, Types of small scale fading, Rayleigh and Rician fading distribution, Training a generic adaptive equalizer, Linear , Nonlinear and algorithms for adaptive equalization, Diversity techniques, RAKE Receiver. Interleaving, Block, Convolutional and turbo codes.	08
4	MULTIPLE ACCESS TECHNIQUES FDMA, TDMA, SSMA, Spectral efficiency of multiple access systems.	06
5	WIRELESS NETWORKING Mobile IP, Mobility and internet module, Assumptions and requirements, entities and terminology, IP packet delivery, registration, Tunelling, Optimisation, IPv6 protocol, Indirect TCP, Snooping TCP, Mobile TCP, Transmission, Transaction oriented TCP.	06

6	TELECOMMUNICATION SYSTEMS GSM, Mobile Services, Architecture, frame structure, Signal Processing in GSM.	07
7	EMERGING TECHNOLOGY Ultra wideband (UWB), Multiband OFDM, Broadband wireless access (BWA), UMTS	05

St	Students will be able to		
1	Design wireless networks		
2	Develops an ability to apply knowledge of engineering to design of cell geometry.		
3	Understand the importance of Multiple Access techniques, voice coding techniques and mobility management in GSM network.		
4	update themselves with recent technology and happenings in the field of Mobile technology		

Suggested Books:

Sr. No.	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint	
1	Wireless Communications-Principles and Practice, Theodore S.	2002	
	Rappaport		
2	Wireless Digital Communications, Dr.KamiloFeher	2 nd Edition	
3	Wireless Communications and Networks, William Stallings Latest edition		
4	Mobile Communications, JochenSciller Latest edition		

Course Name	:	ADVANCED COMPUTER ARCHITECTURE
Course Code	:	ECN 536
Credits	:	3
LTP	:	3-0-0
		Total No. of Lectures – 42

Course Objectives:

The students after attending this course will be able to understand the functioning of microcontrollers. The importance of architecture of device and the programming shall help the students use the devices. The role of support chips and their functioning in a programmable system will become clear.

Lecture wise breakup

No. of Lectures

1	
T	

OVERVIEW OF VON NEUMANN ARCHITECTURE:

Instruction set architecture; The Arithmetic and Logic Unit, The Control Unit,

08

	Memory and I/O devices and their interfacing to the CPU; Measuring and reporting	
	performance; CISC and RISC processors.	
2	PIPELINING:	06
	Basic concepts of pipelining, data hazards, control hazards, and structural hazards;	
	Techniques for overcoming or reducing the effects of various hazards.	
3	HIERARCHICAL MEMORY TECHNOLOGY:	06
	Inclusion, Coherence and locality properties; Cache memory organizations,	
	Techniques for reducing cache misses; Virtual memory organization, mapping and	
	management techniques, memory replacement policies.	
4	INSTRUCTION-LEVEL PARALLELISM:	08
	Concepts of instruction-level parallelism (ILP), Techniques for increasing ILP;	
	Superscalar, superpipelined and VLIW processor architectures; Vector and	
	symbolic processors; Case studies of contemporary microprocessors	
5	MULTIPROCESSOR ARCHITECTURE:	08
	Taxonomy of parallel architectures; Centralized shared-memory architecture,	
	synchronization, memory consistency, interconnection networks; Distributed	
	shared-memory architecture, Cluster computers.	
6	NON VON NEUMANN ARCHITECTURES:	06
	Data flow Computers, Reduction computer architectures, Systolic Architectures.	

Stu	idents will be able to
1	Understand the advanced concepts of computer architecture and RISC and CISC architectural characteristics.
2	Investigating modern design structures of Pipelined and Multiprocessors systems.
3	understand the memory organization and instruction level pipelining including the case studies

Sr. No.	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint	
1	Computer Organization and Architecture: Designing for performance, 1996 W. Stallings, 4th Ed. PHI, 1996.		
2	Computer Architecture: A Quantitative Approach, J. H. Hennessy and 1996 D. A. Patterson, 2nd Ed., Morgan Kaufmann, 1996.		
3	Advanced Computer Architecture: Parallelism, Scalability and 1993 Programmability, Kai Hwang, McGraw-Hill Inc, 1993.		
4Parallel Computer Architecture: A Hardware/Software Approach, D.1999E. Culler, J. Pal Singh, and A. Gupta, HarcourtAsiaPte Ltd., 1999.			

Course Name	:	TELECOMMUNICATION SYSTEM
Course Code	:	ECN 537
Credits	:	3
LTP	:	3-0-0
		Total No. of Lectures – 42

This subject covers the concepts of modern and advance topics of communication like:
Personal area networks like: Bluetooth, Zigbee
WI-FI, Wimax, Ad-hoc networks.

- Human area network.
- Cognitive Radio Network.
- Optical wireless network.

Lecture wise breakup

No. of Lectures

	Review of wireless communication, wireless media, satellite communication,	03	
1	wireless standards, propagation techniques, wireless generation – 2g, 3g, 4g protocols, open and proprietary standards.		
2	TRAI (telecom regulatory authority of India), its role and scope, TERM/DOT, WPC.	02	
3	Wi-Fi, wi-max, ad-hoc network, and standards.	02	
4	Bluetooth, zigbee, ultra wide band communication.	06	
5	Broadband (wired and wireless)	03	
6	Cable, DTH and IP-TV.	05	
7	Optical wireless communication	02	
8	Global positioning system (GPS)	02	
9	Telecom infrastructure and telecom security, IPV-4 and IPV-6.	03	
10	Cognitive radio communication	04	
11	Human area networks.		
12	Simulating telecom networks, case study referred simulation (
13.	Project/case study of the telecom status in India.		

Course Outcomes:

Studer	Students will be able to gain		
1	Knowledge of commercial communication systems		
2	Knowledge of software tools for modeling and simulation of telecommunication		
	systems		
3	Ability in the design of communication networks, wireless transmission systems, radar		
	and remote sensing sensors		
4	Ability in the design of electronic circuits for the radio front end of a trasmit/receive		
	equipment		
5	Ability to apply telecommunication systems engineering techniques taking account of		
	industrial and commercial constraints – project management.		

Sr. No.	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1.	An Introduction to Wireless Technology, Gary S. Rogers and John Edwards, Pearson Education	2003
2	Bluetooth Revealed, Brent A. Miller and ChatschikBisdikian, Pearson Education.	2000

Course Name	:	MICROCONTROLLER AND EMBEDDED PROCESSORS
Course Code	:	ECN 538
Credits	:	3
LTP	:	3-0-0
		Total No. of Lectures – 42

The students after attending this course will be able to understand the functioning of microcontrollers and microprocessors. The importance of architecture of device and the programming shall help the students use the devices. The role of support chips and their functioning in a programmable system will become clear.

Lecture wise breakup

No. of Lectures

	PIC MICROCONTROLLER Introduction to PIC18F family of microcontroller, CPU, Architecture, pin	12			
1	configuration, pipelining ,memory organization, registers, addressing modes				
	Instruction set, Assembly language programming, subroutines, timers, Interrupts,				
	I/O ports, serial port, ADC, PWM				
2	PERIPHERAL OF PIC MICROCONTROLLER	10			
	Timers – Interrupts, I/O ports- I^2C bus-A/D converter-UART- CCP modules -ADC,				
	DAC and Sensor Interfacing –Flash and EEPROM memories,				
	Interfacing with LED, Switches, LCD, Key pad with examples				
3	ARM PROCESSORS	10			
	ARM Architecture, CPU, Registers, memory organization, Buses, Interrupts,				
	Addressing modes, GPIO, timers, Interfacing of LCD				
4	FUNDAMENTALS OF EMBEDDED SYSTEMS	10			
	Real time systems, Multitasking system, Thread states, pending threads, context				
	switching, round robin scheduling, priority based scheduling, assigning priorities,				
	deadlock.				

Course Outcomes:

Studen	Students will be able to			
1	Understand the architecture and programming of contemporary microcontroller and			
	microprocessor like PIC, ARM etc.			
2	Interface peripheral devices with these microcontrollers			

3	Use microcontrollers, microprocessors architecture knowledge to design Embedded	
	System.	

Suggested Books:

Sr. No.	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1.	PIC Microcontroller & Embedded Systems-using assembly and C for PIC 18 by Muhammand Ali Mazidi, R.D Mckinlay & Danny Causey,	2008
	Pearson Education	
2	Microcomputer Engineering by Gene H. Miller, Pearson Education	2003
3	Fundamentals of Embedded software by Danial W. Lewis, PHI	2000
4	Embedded Microcontroller by Todd D. Mortan, Pearson Education	2000

REFERENCES:

Course Name	:	DIGITAL IMAGE PROCESSING
Course Code	:	ECN 539
Credits	:	3
LTP	:	3-0-0

Total No. of Lectures – 42

Course Objectives:

The students after attending this course will be able to understand advanced topics like:

- Spatial domain filtering.
- Filtering in frequency domain using hotelling transform, Fourier transform and discrete cosine transform.
- Image restoration and fusion.
- Image compression techniques.
- Image Segmentation.

Lecture wise breakup

No. of Lectures

	INTRODUCTION:	02
1	Light, Brightness adaption and discrimination, Pixels, coordinate conventions,	
I	Imaging Geometry, Perspective Projection, Spatial Domain Filtering, sampling and	
	quantization.	
2	SPATIAL DOMAIN FILTERING:	04
	Intensity transformations, contrast stretching, histogram equalization, Correlation	
	and convolution, Smoothing filters, sharpening filters, gradient and Laplacian	
3	FILTERING IN THE FREQUENCY DOMAIN:	05
	Hotelling Transform, Fourier Transforms and properties, FFT (Decimation in	
	Frequency and Decimation in Time Techniques), Convolution, Correlation, 2-D	
	sampling, Discrete Cosine Transform, Frequency domain filtering	

4	IMAGE RESTORATION AND FUSION: Basic Framework, Interactive Restoration, Image deformation and geometric transformations, image morphing, Restoration techniques, Noise characterization, Noise restoration filters, Adaptive filters, Linear, Position invariant degradations, Estimation of Degradation functions, Restoration from projections	05
5	IMAGE COMPRESSION:	06
	Encoder-Decoder model, Types of redundancies, Lossy and Lossless compression, Entropy of an information source, Shannon's 1st Theorem, Huffman Coding, Arithmetic Coding, Golomb Coding, LZW coding, Transform Coding, Sub-image size selection, blocking artifacts, DCT implementation using FFT, Run length coding, FAX compression (CCITT Group-3 and Group-4), Symbol-based coding, JBIG-2, Bit-plane encoding, Bit-allocation, Zonal Coding, Threshold Coding, JPEG, Lossless predictive coding, Lossy predictive coding, Motion Compensation	00
6	WAVELET BASED IMAGE COMPRESSION:	04
Ū	Expansion of functions, Multi-resolution analysis, Scaling functions, MRA refinement equation, Wavelet series expansion, Discrete Wavelet Transform (DWT), Continuous Wavelet Transform, Fast Wavelet Transform, 2-D wavelet Transform, JPEG-2000 encoding, Digital Image Watermarking.	51
7	MORPHOLOGICAL IMAGE PROCESSING:	05
	Basics, SE, Erosion, Dilation, Opening, Closing, Hit-or-Miss Transform, Boundary Detection, Hole filling, Connected components, convex hull, thinning, thickening, skeletons, pruning, Geodesic Dilation, Erosion, Reconstruction by dilation and erosion.	
8	IMAGE SEGMENTATION:	05
	Boundary detection based techniques, Point, line detection, Edge detection, Edge linking, local processing, regional processing, Hough transform, Thresholding, Iterative thresholding, Otsu's method, Moving averages, Multivariable thresholding, Region-based segmentation, Watershed algorithm, Use of motion in segmentation	
9	FEATURE ESTIMATION:	06
	Morphological Operations, Edge Detection, Edges in multichannel images, Texture Analysis, Optical flow based motion estimation, Reflectance based shape recovery, Depth from focus, Stereo matching and depth estimation.	

Studen	Students will be able to			
1	Understand basic concepts of digital image processing.			
2	Apply principles and techniques of digital image processing using MATLAB			
3	Analyze and implement image processing algorithms.			
4	Gain hands-on experience in using software tools for processing digital images			

Sr. No.	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1.	Digital Image Processing, 3rd Edition, by Rafael C Gonzalez and Richard E Woods. Publisher: Pearson Education.	2007
2	Fundamentals of Digital Image Processing By Anil K Jain.	2005

Course Name	:	OPTOELECTRONICS AND COMMUNICATION
Course Code	:	ECN 540
Credits	:	3
LTP	:	3-0-0
	•	Total No. of Lectures – 42

The students after attending this course will be able to understand advanced topics like:

- Optic fiber material and their properties.
- Optical transmitter and receiver design.
- Lightwave communication system design
- Optical instrumentation
- Components of fiber optic networks
- Fiber losses and their compensation

Lecture wise breakup No. of Lectures

1	FIBER OPTIC GUIDES	08
	Basic Optical laws and definitions, Optical fiber modes and configurations, mode	
	theory for circular waveguides, Single mode fibers, graded index fiber structure,	
	fiber materials, Glass fibers, active glass fibers, plastic optical fibers, Photonic	
	crystal fibers, Fiber manufacturing, design issues, fabrication methods, cables and	
	connectors	
2	FIBER LOSSES AND DISPERSION	07
	Intrinsic and extrinsic losses, dispersion in single mode fibers, dispersion induced	
	limitations, Polarization mode dispersion, speciality fiber, Dispersion shifted and	
	Dispersion flattened fibers, few mode fibers, dispersion management, nonlinear	
	effects, stimulated Raman scattering, Stimulated Brillouin scattering, Self phase	
	modulation, cross phase modulation, four wave mixing	
3	OPTICAL TRANSMITTERS AND RECEIVERS	08
	LED, power current characteristics, spectrum, modulation response and structures,	
	semiconductor lasers, Optical gain, feedback and laser threshold, laser structures,	
	control of longitudinal modes, laser characteristics and transmitter design,	
	Photodetectors, Receiver design and performance	
4	LIGHT WAVE SYSTEM	07
	System architecture, sources of power penalty, Multichannel systems: WDM	

	lightwave systems, WDM components, TDM, Subcarrier multiplexing, Soliton based communication, loss managed solitons and dispersion managed solitons	
5	COMPONENTS OF FIBER OPTIC NETWORKS	08
	Transceivers for fiber optic networks, Semiconductor optical amplifiers and its	
	applications, Erbium doped fiber amplifiers, Raman fiber amplifiers, hybrid	
	amplifiers, Thulium doped fiber amplifiers, Neodymium doped fiber amplifiers,	
	Ytterbium doped fiber amplifiers, passive components, switches and functional	
	modules of fiber optic networks	
6	OPTICAL INSTRUMENTATION:	04
	Introduction to test and measuring instruments, optoelectronic circuits: OTDR,	
	optical Spectrum Analyzer, Fiber Optic sensors: fiber optic and radiation sensors,	
	their noise and error analysis, application in physical sensors.	

Studen	ts will be able to
1	Understand the basic and applied concepts of optical fiber material and their properties, optical transmitter and receiver design.
2	Understand the design aspects of lightwave communication system, various losses and their compensation. Wavelength division multiplexing, optical instrumentation, optical amplifier, dispersion compensation techniques.
3	Explain the various functional modules of fiber optic networks.
4	Do various experiments, simulate and analyze the designed systems using these concepts. Students will analyze and design various types of optical communication systems.

Suggested Books:

Sr. No.	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1.	G.P. Aggarwal, "Fiber optic Communication systems, John Wiley and sons.	Latest Edition
2	Mynbaev, "Fiber- optics communication Technology", Pearson Education India.	Latest Edition
3	Keiser, "Optical fibre communication", Tata McGraw Hill	2009
4	John M Senior, "Optical fiber communication", Pearson India	Latest Edition

Course Name	:	ADVANCED TECHNIQUES FOR SIGNAL RECEPTION
Course Code	:	ECN 541
Credits	:	3
LTP	:	3-0-0

Course Objectives:

Total No. of Lectures – 42

The students after attending this course will be able to understand advanced topics like:

- Blind multi-user detection
- Group blind multi-user detection
- Space time multi-user detection
- Turbo multi-user detection

Lecture wise breakup No. of Lectures

	BLIND MULTIUSER DETECTION:	07
1	Linear receivers for synchronous CDMA, blind multiuser detection, direct	
1	methods, subspace methods, performance of blind multiuser detectors, subspace	
	tracking algorithms, blind multiuser detection in multipath channels.	
2	GROUP BLIND MULTIUSER DETECTION:	07
	Group blind multiuser detection, synchronous CDMA, performance, nonlinear	
	group blind multiuser detection for CDMA, group blind multiuser detection in	
	multipath channels.	
3	ROBUST MULTIUSER DTECTION IN NON GAUSSIAN CHANNELS:	07
	Multiuser detection via robust regression, asymptotic performance of robust	
	multiuser detection, and implementation of robust multiuser detectors, robust	
	multiuser detection based on local likelihood search, extension to multipath	
	channels, detection in stable noise.	
4	SPACE TIME MULTIUSER DETECTION:	07
	Adaptive array processing in TDMA systems, optimum space time multiuser	
	detection, linear space time multiuser detection, adaptive space time multiuser	
	detection in synchronous CDMA, adaptive space time multiuser detection in	
	multipath CDMA.	
5	TURBO MULTIUSER DETECTION:	07
	Turbo multiuser detection for synchronous CDMA, turbo multiuser detection with	
	unknown interference, turbo multiuser detection in CDMA with multipath fading,	
	turbo multiuser detection in CDMA with turbo coding, turbo multiuser detection in	
	CDMA with turbo coding.	
6	NARROWBAND INTERFERENCE SUPPRESSION:	07
	Linear predictive techniques, nonlinear predictive techniques, code aided	
	techniques, performance comparison of NBI suppression techniques, near far	
	resistance to both NBI and MAI by linear MMSE (min mean square error) detector,	
	adaptive linear MMSE NBI suppression, and maximum likelihood code aided	
	methods.	l

Course Outcomes:

Studen	ts will be able to
1	Understand basic and applied concepts of Blind multi-user detection
2	Understand basic and applied concepts of Group blind multi-user detection
3	Understand basic and applied concepts of Space time multi-user detection
4	Understand basic and applied concepts of Turbo multi-user detection

Sr. No.	Name of Book/ Authors/ Publisher	Year of Publication/ Reprint
1.	Wireless Communication Systems: Advanced Techniques For Signal Reception By Xiaodong Wang, H. Vincent Poor, Pearson 1st Edition	2006
2	Smart Antennas For Wireless Communication: Is 95 And Third Generation Cdma Application Pearson.	1999
3	Space -Time Wireless Channels – Durgin, Pearsons.	Latest edition

COURSE CODE	:	ELECTRONICS LAB I
COURSE CODE	:	ECN 542
L T P	:	003
CREDIT	:	2

Course Objectives: By the end of this course, the students should be able to

- 1. Design wired and wireless ad-hoc networks
- 2. Identify the architecture of GSM and explain its functioning.
- 3. Design and demonstrate the link budget in a satellite communication system.

	List of experiments:	Number of turns:
1	To design of various network topologies like ring, star and mesh etc. and calculate their parameters.	1
2	Design a fully connected and self healing network and find their parameters	1
3	To study GSM Architecture along with functionality of hardware	1
4	To understand Network topology and implementation	1
5	To study and estimate Call flow (Voice and data)	1
6	To comprehend regarding Intra Circle Roaming (ICR) functionality	1
7	To estimate, calculate and design Link Budget etc.	1
8	To measure the baseband analog signal parameters in a wireless link.	1
9	To study the phenomenon of linear and circular polarization of antennas.	1
10	To measure the propagation delay, C/N ratio and bit error rate of a signal in a sitcom link.	1
11	To setup a RS-232 wireless communication link using RS-232 ports.	1

12	To design the various combinational and sequential digital	1
	circuits using VHDL and simulate them.	

,	Students will be able to
1	Design, implement and analyze wired and wireless networks.
2	Analyze satellite communication system and derive the link budget.
3	Evaluate the functionality of GSM architecture and demonstrate its implementation.

Course code	: ELECTRONICS LAB II
Course code	: ECN 543
L T P	:003
Credit	: 2
Course Objectives:	

By the end of this course, the students should be able to

- 1) To understand the operation of the various modules/components of a Fiber optic Communication system
- 2) Use modern hardware and software tools to design and analyze optical communication systems.
- 3) Describe the various live technologies like FTTH,GSM,CDMA and enhance their technical knowledge
- 4) To program, simulate and test the PIC 18 and ARM processor based circuits and to interface sensors.
- 5) To program various devices using FLOWCODE, MPLAB and KIEL.

	List of experiments:	Number of
		turns:
1	Characterization of DFB Lasers, Optical Add Drop Multiplexer	1
	and 4 channel DWDM devices.	
2	Analysis of 4 channel DWDM system.	1
3	Computer aided design of optical communication systems	2
	including advanced modulation formats, DWDM/CWDM system	
	using optical amplifiers, FTTH/PON, OCDMA, Dispersion	
	compensation etc. and do investigations in terms of BER, eye	
	diagrams, electrical spectrum	
4	Design and simulation of multimode optical communication	1

	system for Gigabit Ethernet, PONs, Free Space optics.	
5	To design and analyze the different 2 D and 3D optical	2
	waveguides, couplers, bent waveguides, splitters etc. and study	
	their mode profiles	
6	To study and estimate Handover facilities, Handover Success rate	1
7	To study optimization strategies to improve grade of service.	1
8	To calculate and estimate EMF radiations	1
9	To calculate and estimate loss in leaky cable	1
10	To estimate various types of interferences	1
11	To conduct the experiments based on LED, 7 segment display,	1
	LCD, Graphical LCD, keypad and motor driver interface using	
	Flow code.	
12	To program and simulate PIC microcontroller based experiments	1
	using flowcode, MPLAB.	
13	To program and simulate ARM processor based experiments	1
	using Flowcode and keil software.	

Students will be able to		
1	Evaluate systems and perform fiber-optic communication system engineering calculations	
2	Design and analyze the optical communication systems using hardware and software tools available in the lab.	
3	Demonstrate the various live technologies like FTTH,GSM,CDMA and identify its performance parameters.	
4	Design embedded system using different processors and interface various peripherals and sensors.	
5	Analyze a given embedded system design and to evaluate its performance.	